

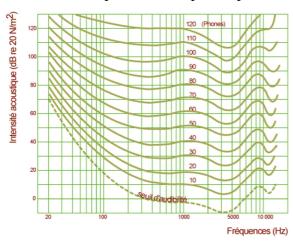
Deuxième année : psychoacoustique et acoustique architecturale

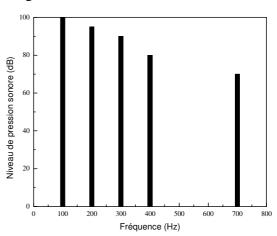
Contrôle terminal – 2h

Tout document interdit ; calculatrice autorisée

Questions de cours

Sonie : définir les décibels de perte (Hearing Loss) et donner leur utilité.


Tonie : décrire les effets de couplage sonie-tonie.


Qu'est-ce qu'est le triangle vocalique et à quoi sert-il ?

Définir le concept de clarté.

Perception de l'intensité en fonction du diagramme de Fletcher

Un son harmonique est défini par le spectre sur la figure ci-dessous:

- 1. A partir du diagramme de Fletcher donné ci-dessus, déterminer l'atténuation perçue pour chaque fréquence. Les résultats seront donnés dans un tableau.
- 2. Calculer la sonie -le niveau sonore global apparent- du son.
- 3. Que se passe-t-il si le niveau du spectre était globalement diminué de 40 dB?

Etude de bruits (les quatre questions sont largement indépendantes)

Le tableau ci-dessous détaille les bandes de fréquences utilisées dans l'étude de bruits.

Numéro de la bande	1	2	3	4	5	6	7	8
Fréquence basse (Hz)	44	88	176	353	707	1414	2828	5656
Fréquence haute (Hz)	88	176	353	707	1414	2828	5656	11312
Valeur moyenne (Hz)	63	125	250	500	1000	2000	4000	8000

1. Quel rapport existe-t-il entre la fréquence basse et la fréquence haute dans chacune de ces bandes ? Comment nomme-t-on l'intervalle correspondant ?

- 2. Un haut-parleur, supposé être une source isotrope, délivre une puissance acoustique $P_1 = 1 \times 10^{-3}$ W, identique dans chacune de ces huit bandes. Calculer la puissance acoustique globale P_{globale} pour l'ensemble des huit bandes. En déduire le niveau de puissance acoustique L_{W} de la source.
- 3. Calculer le niveau sonore global en un point M situé à deux mètres de ce haut-parleur.
- 4. Un fabricant de casque antibruit fournit les caractéristiques suivantes pour un de ses modèles. Le tableau ci-dessous présente l'atténuation -en dB- apporté par le casque lorsque l'on se trouve à deux mètres de la source.

Numéro de la bande	1	2	3	4	5	6	7	8
Atténuation (dB)	12	14	18	23	36	31	35	34

Le niveau sonore de la source non atténué pour chacune des bandes de fréquences est précisé dans le tableau ci-dessous.

Numéro de la bande	1	2	3	4	5	6	7	8
Niveau sonore non atténué (dB)	73	73	73	73	73	73	73	73

- a. Donner le niveau sonore atténué -en dB- dans chacune des bandes.
- b. En déduire le niveau sonore global atténué.
- c. Pour le bruit étudié à la question 2., quelle est l'atténuation globale apportée par ce casque ?